+ Reply to Thread
Page 1 of 4 1 2 3 ... LastLast
Results 1 to 20 of 71

Thread: [INFO] seputar istilah dan ilmu belajar mesin kendaraan

  1. #1
    Banned
    This user has no status.
     
    ----
     
    ~Race~ Masih Tahap Guest
    Join Date
    Aug 2008
    Posts
    86
    Post Thanks / Like
    Achievements

    [INFO] seputar istilah dan ilmu belajar mesin kendaraan

    jadikan ini tempat share buat belajar ttg mesin kendaraan anda smua
    bukan tempat oot ya.
    bagaimana cara mengungkapkan perasaan kepada yang dikasihi?<br />apakah arti cinta itu?<br /><br />~Race~

  2. #2
    Banned
    This user has no status.
     
    ----
     
    ~Race~ Masih Tahap Guest
    Join Date
    Aug 2008
    Posts
    86
    Post Thanks / Like
    Achievements

    Re: [INFO] seputar istilah dan ilmu belajar mesin kendaraan

    Seting Karburator



    Meski bisa pertahankan karbu standar bawaan pabrik, kohar alias korek harian 4-tak tetap perlu ubah setingan. “Kompresi sudah naik dan kem dikorek, karbu sebagai pemasok gas bakar harus disesuaikan,” jelas Teng Suang Hak, mekanik Ahak Motor, yang mangkal di Jl. Kapuk Raya, No. 55D, Jakarta Utara.

    Pria akrab dipanggil Ahak itu, ajukan tips simpel nyeting main-jet dan pilot-jet. “Tidak pake patokan. Soalnya karakter masing-masing kohar beda. Kuncinya, rasakan saja dampak di mesin,” kata Ahak yang sibuk garap motor balap pesanan saat ditemui Em-Plus di bengkelnya.

    Lakukan penyetelan gas dan angin secara maksimal. “Jika teriakan mesin pada setelan gas tertinggi kurang njerit, berarti main-jet memang kurang. Coba naikan 5 angka dulu,” kata lelaki berambut cepak ini.

    Setelah itu, coba tarik gas. Jika pada gas tinggi tampak kayak ada kosong, alias ada jeda pada pasokan bensin. “Itu main-jet masih kurang. Bisa naikan satu step lagi, atau jadi 7 atau 7,5 angka. Biasanya, untuk kohar kenaikan itu sudah cukup tinggi,” ingatnya.

    Sebaliknya, jika saat digas malah terasa mbrebet di putaran atas. Itu artinya, kenaikan main-jet yang dilakukan terlalu besar dan harus diturunin. Selain mbrebet, setelan main kegedean juga berdampak bensin boros. “Bensin terbuang dan nggak terbakar maksimal. Bisa dilihat di busi. Kalau cepat sekali hitam, berarti setelan kegedean pas,” ujar Ahak lagi.

    Sementara untuk setelan pilot-jet, gejalanya juga dideteksi dengan beberapa hal. Gejala pertama, jika motor susah hidup setelah dilakukan korekan. “Atau setelah hidup, tapi pada putaran bawah tampak seperti ada kosongnya. Kayak bensin enggak jalan. Itu artinya pilot-jet perlu dinaikan,” katanya.

    Cara menaikan juga bertahap. “Sama kayak kenaikan main-jet, coba dinaikan 5 angka dulu,” tambah mekanik yang sukses bikin Kanzen melejit di pentas pasar senggol Jakarta.

    Ahak kasih ancer-ancer, kebiasan yang dilakukannya, setelan pilot-jet maupun main–jet untuk kohar, pas pada penambahan antara 5 sampai 7,5 angka. Tentu saja, tergantung karakter korekan dan jenis karburator. “Tapi dari pengalaman, setingan pilot dan main-jet kohar enggak pernah sampai 10. Jenis karburator apapun, deh,” tutup Ahak.

    http://www.motorplus-online.com/articles.asp?id=6442
    bagaimana cara mengungkapkan perasaan kepada yang dikasihi?<br />apakah arti cinta itu?<br /><br />~Race~

  3. #3
    Banned
    This user has no status.
     
    ----
     
    ~Race~ Masih Tahap Guest
    Join Date
    Aug 2008
    Posts
    86
    Post Thanks / Like
    Achievements

    Re: [INFO] seputar istilah dan ilmu belajar mesin kendaraan

    seting silinder

    Porting 4-Tak Perbesar Efisiensi Volumetrik



    Efisiensi volumetrik mulai diungkap mekanik balap. Seperti di final kejurnas balap motor Indonesia 2005 di Sentul, dua minggu lalu. Mekanik yang bisa mengail angka efisien volumetrik besar, sanggup mengantar pembalapnya jadi juara nasional.

    Menurut Ibnu Sambodo, efiseinsi yaitu campuran bensin-udara yang bisa masuk ke dalam silinder. Untuk mendapatkan angka 100 persen memang susah. Banyak faktor yang mendukung. Seperti diameter payung klep, porting, karburator dan knalpot.

    Soal karbu, payung klep lebar dan knalpot, mekanik lokal sudah banyak yang tahu. “Tinggal porting yang belum dimainkan,” jelas Ibnu. Makanya dari dulu sudah banyak yang pasang klep lebar namun kenyataanya motor belum bisa lari kencang.

    Seperti kepala silinder TDR. Klep isap dan buang sudah besar. Namun tetap saja motor jalan di tempat. Akhirnya banyak yang beralih lagi pakai klep dan head standar. Di kejurnas lalu akhirnya ketemu porting yang pas.




    Bang Jay alias Zaenudin yang bukan MZ, mekanik Yonk Jaya Motor di Bandung memperbaiki kinerja kepala silinder TDR. “Porting lubang isap dan buang digeser,” jelas Bang Jay yang mengantar Wahyu Widodo sanggup mengimbangi Jupiter-Z Hokky ‘Duck’ Krisdianto di Sentul.

    Porting yang dilakukan Bang Jay memperlebar lubang isap dan buang. “Menurut buku Four Stroke Perpormace Tuning, karya A. Graham Bell, besarnya 80 persen dari diameter katup,” jelas Ibnu.

    Namun angka 80 persen tidak mengikat. “Mekanik sendiri yang harus merasakan ubahan itu,” jelas Ibnu. Tentu berdasarkan coba-coba. Seperti yang dilakukan Bang Jay.

    Bang Jay juga mempercepat aliran bahan bakar-udara menuju ruang silinder. Caranya dengan menaikkan posisi klep. Sitting klep dan katup naik. “Sehingga kepala silinder bisa dipapas abis dan kompresi bisa besar,” ungkap Bang Jay.

    Cara mempercepat aliran laju gas bakar juga diterapkan Benny Djatiutomo pada Jupiter besutan Hokky Krisdianto dan H. Ichal. Caranya dudukan intake manifold di kepala silinder dipapas. Besarnya angka papasan sekitar 4 mm. Cukup.

    Ilmu Porting Luar (1) CFM = Aliran Gas Bakar


    Istilah CFM masih asing di telinga mekanik lokal. Ini ilmu 4-tak impor didapat mekanik Indonesia yang belajar ke luar negeri. “Artinya debit aliran gas bakar di lubang isap dan buang. Satuannya CFM (Cubic Feet Minute),” sebut mekanik yang tahu CFM tapi ogah disebut nama.

    Sudah pasti bisa ditebak. Mekanik yang belajar khusus keluar negeri yaitu Benny Djatiutomo ke Swedia. Atau Tomy Huang ke Australia. Beny mekanik Star Motor, Jakarta dan Tomy penemu CDI Cibinong.



    CFM dalam satuan Inggris. Kalau satuan metriknya m3/detik. Atau cc/detik. Untuk mengukur CFM harus menggunakan alat yang disebut flowbenches atau bahasa sininya flowmeter.

    Angka CFM sangat besar artinya. Makin besar CFM akan didapat daya kuda yang melangit. “Angka CFM paling tinggi kastanya. Kemudian menyusul kem, kompresi dan pengapian,” jelas sumber yang belum mau sesumbar itu.

    Angka CFM disensor dari lubang isap dan buang. Untuk mengetahui aliran di titik tertentu dipasangi sensor. Kemudian dialiri udara. Maka sensor akan mendapatkan sinyal kecepatan debit udara itu.

    Untuk mendapatkan CFM yang besar, porting lubang isap dan buang harus benar-benar bagus. Banyak faktor lain yang juga mempengaruhi. Seperti sudut atau tekukan manifold, bentuk dan kerataan lubang, besar payung dan batang klep. Serta bentuk bibir klep dan ruang bakar.

    Berarti kunci tenaga besar letaknya di kepala silinder. Sesuai dengan komentar Scott Crouse, penulis di website Chevy High Performance. Katanya begini, kunci untuk mendapatkan tenaga kuda besar tergantung di kepala silinder. Bentuk lubang (isap dan buang), aliran gas bakar ke silinder dan ke luar silinder.

    Ketika mengorek mesin, kepala silinder dulu yang disasar. Aliran lubang isap dan buang dibenahi. Selanjutnya bawa ke bengkel yang punya flowmeter. Bisa ditebak besar alirannya dalam satuan CFM.

    Untuk mengkonversi dalam satuan dk atau HP tinggal dikalikan. Rumusnya sederhana, yaitu: HP = 0,256 x cfm

    Dari bisik-bisik, Yamaha Jupiter-Z pacuan Hokky Krisdianto sekitar 65 cfm. Maka daya kudanya bisa dicari. Tinggal dikalikan 0,256. Hasilnya 16,64 dk (HP). Menurut Beny, dari dynotest didapat 18 dk.

    Bisa lebih besar 2 dk, sebab pengapian, kompresi dan kem mendukung. Jika faktor itu kurang bagus, penurunannya juga turun sekitar 2 dk. Jadi, gampang sekali sebenarnya menggapai daya kuda besar. Tinggal bikin dulu porting yang benar.

    Ilmu Porting Luar (2) Perbesar CFM

    Minggu lalu sudah dibahas Cubic Feet Minnute alias CFM yang menyatakan aliran gas bakar di lubang isap dan buang. Kenaikan CFM seiring dengan daya kuda yang dihasilkan mesin. Untuk itu mekanik perlu berlomba menaikan angka itu. Caranya ditempuh dengan memperbaiki kinerja kepala silinder.

    Bagaimana caranya? Dari pengalaman, intip saja kepala silinder Jupiter-Z pacuan Hokky Krisdianto yang dibenahi di Swedia lewat Benny Djatiutomo. Atau Honda Legenda dan Karisma milik BRT (Bintang Racing Team) yang dibenahi di Australia lewat Tomy Huang dari Cibinong. Yuk dilihat. Aong

    KLEP LEBAR DAN LIFT

    Debit gas bakar bisa dipompa dengan pasang klep payung lebar. Semua mekanik sudah tahu itu. Ditempuh lewat cara mengubah posisi sudut klep. Justru lebih penting lagi tinggi angkat katup dan durasi harus dinaikkan. Tentu lewat papas pantat kem.

    Durasi juga sudah banyak yang tahu, tinggal lift. Makin tinggi angkat katup, CFM akan terdongkrak. Namun tidak bisa mematok lift setinggi-tingginya. Terbentur mentok seher dan pegas klep yang tidak kuat.

    Batas ideal, rata-rata setiap bebek 110 dan 125 cc tinggi angkat katup sekitar 6 mm. Akan diraih angka CFM yang besar dan pegas klep dianggap masih aman. Sebab yang bagus jarak main pegas katup tidak abis sampai mentok.

    Diusahakan jarak main pegas hanya tertekan setengah. Sebab bila lewat dari itu, klep akan menutup lebih telat lantaran per loyo. Bahkan timbul suara kraaakkk… kasar di kepala silinder bila gas dibejek abis.

    Jarak main klep bisa dilihat langsung. Per klep tanpa tekanan diukur dulu. Kemudian per ditekan sampai mentok. Nah, perbedaan panjang kondisi bebas tanpa tekanan dan ada tekanan itu namanya jarak main pegas.

    ATUR ULANG LUBANG

    Agar aliran gas bakar lebih cepat keluar-masuk ruang silinder, lubang isap dan buang dipersingkat. Jangan sampai berkelok-kelok. Arahnya diluruskan. Seperti yang ditempuh Benny Djatiutomo dan Tomy Huang, menambal permukaan lubang yang berkelok.

    Setelah ditambal, lubang isap dan buang diperlebar kembali. Menggunakan pisau tuner, dikikislah bagian depan yang ditambal tadi. Agar besar lubang tetap seperti semula.

    Namun lem yang digunakan untuk menambal lubang berkelok masih jadi rahasia. Maklum untuk mendapatkan ilmu CFM perlu biaya besar dan harus keluar negeri. Tapi, bagi yang mau ikutan dan punya dana cekak, cukup baca MOTOR Plus dan kembangkan sendiri. Kan murah meriah, makanya baca terus…

    PENGARUH BATANG KLEP


    Memang sih besar batang katup dipangaruhi besar bos klep. Namun perlu dicermati, lihat batang katup yang dekat payung klep. Pasti ada bagian yang mengecil. Itu artinya, ketika klep sedang membuka diusahakan batang yang kecil itu tepat di tengah lubang isap atau buang.

    Alasan itu supaya CFM besar. Sebab batang klep juga bisa menghambat aliran gas bakar. Itu sebabnya dari pabrik klep yang bagus di batang ada bagian yang mengecil. Terutama yang dekat payung klep itu.

    Ilmu Porting Luar (3) Trik Perbesar Debit Gas Bakar



    Yuk dilisting dulu. Brother yang punya Honda Karisma 125, Shogun 125, Honda Supra Fit, Supra X 125, Smash 110 dan Kymco Cevira silakan tukar informasi soal sakelar sein. Meski beda pabrik, sakelar sein motor tadi sama persis.

    Jadi kalau ada masalah dan pengin beli sakelar sesuai merek tapi barang lagi nggak ada, bisa bilang ke nci penjaga toko carikan sakelar lain. Tinggal sebut sakelar sein merek dan tipe motor di atas.

    KLIK - DetailBeberapa pengalaman, sakelar sein Honda Karisma agak sulit di toko. Lain dengan milik Supra, Smash atau Shogun. Padalah barangnya sama. Untuk orisinal tertulis Toyo Denso atau Japan Toyo Denso di milik Honda atau SGP (Suzuki Genuine Part). Merek lain juga ada semisal Boramtek.

    Em-Plus membongkar kedok salah satu motor untuk membuktikan. Yang jadi contoh Suzuki Shogun 125. Setelah dibuka, ada soket tiga kaki untuk dudukan sakelar tadi. Saat dicoba, peranti Karisma, Smash sama persis dengan milik Shogun (gbr. 1).

    Ilmu Porting Luar (4) Tiru Trik Mekanik Amrik


    Berkunjung ke bengkel MBG di Jogja, mereka terkenal bikin mobil drag race dan sering dapat order ubah posisi sudut kemiringan klep motor. Di sana terdapat Flowbench merek Superflow tipe 110 untuk mengukur hasil porting kepala silinder.

    Sekalian belajar menggunakan Superflow lewat bantuan Widodo yang jadi operator alat buatan Amrik itu. Lebih menarik lagi ada buku manual cara menggunakan alat pengukur debit gas bakar itu. Cuma sori coy, katanya hanya orang tertentu boleh tahu.

    Pada bab 4.0 menerangkan bentuk dan besar lubang isap ideal. Guna didapat aliran gas bakar maksimum. Khusus untuk intake atau lubang isap dengan suplai karburator atau sistem injeksi.

    Jelasnya, perhatikan (gbr. 1). Ukuran venturi atau moncong karbu 0,85 dari diameter klep. Untuk motor 4-tak Indonesia susah mencari angka ini. Hasilnya pasti kecil sekali. Sebab basis dasar motor balap yang dipakai adalah bebek jalanan untuk ke pasar.

    Tapi, regulasi bisa dijadikan patokan. Jika bebek 110 cc langsung pasang karburator 24. Bebek 125 cc tinggal caplok karbu 28 mm. Gampang, kan!

    Tinggal lubang manifold. Digambarkan sebesar diameter klep. Besarnya akan sama dengan lubang atas di kepala silinder.

    Bagian ketiga ada lagi yang mengecil. Sebesar 0,85 kali diameter klep (0,85D). Contoh klep bebek 125 cc dari regulasi baru klep 31 mm. Maka 0,85 x 31 = 26,35 mm. Posisi ini katanya berada 12 mm di atas sitting klep (dudukan klep).

    Ilmu Porting Luar (5-Abis) Hal Kecil Pengaruhi CFM

    Guna mendapatkan CFM besar masih banyak cara yang perlu dilakukan. Berpatokan dari buku Flowbent Operator Manual SF-110/120 dari Superflow Corporation Amerika. Buku itu menjelaskan cara penggunaan alat pengukur CFM yang mempengaruhi daya kuda mesin.

    Berikut hal kecil yang mempengaruhi besaran CFM.

    Tinggi Angkat Katup (Lift)



    Soal tinggi angkat katup pernah juga dibahas MOTOR Plus. Namun ketika itu masih berpatokan pada pegas klep lokal yang belum kuat. Akhirnya mengambil cara aman dengan berpatokan pada jarak bebas main per.

    Masih ada patokan bisa dijadikan pegangan dari buku panduan Superflow itu. “Tinggi angkat katup mempengaruhi aliran gas bakar di mesin,” jelas Widodo, operator Superflow dari MBG Racing Team Jogja.

    Menggunakan Superflow, bisa dilihat pada tabel untuk beberapa lift yang berbeda. Tentu berdasarkan percobaan dan pengukuran. Mesin harian kebanyakan tinggi angkat katup diambil aman, sekitar 0,25 x d (d=diameter klep).

    Untuk mesin racing diambil ekstrem. Berkisar 0,30 x d atau 0,35 x d. Jika di Yamaha Jupiter-Z 110 aplikasi klep diameter lebar 27 mm. Lift yang ideal bisa digapai sekitar 27 x 0,3 = 8,1 mm. Tinggi sekali, kan?

    Dari hasil pengukuran Superflow bisa dilihat tabel. Angka yang ideal CFM tertinggi harusnya 27 x 0,35 = 9,45 mm. Namun rasanya lumayan sukar untuk mencapai angka lift sebesar itu.

    Banyak yang perlu dipertimbangkan. Seperti ketahanan pegas. Jarak main bebas pegas dan kekerasan per itu sendiri. Jika lift kelewat tinggi pegas enggak kuat atau malah loyo. Masalahnya komplek.

    Menurut Benny Djatiutomo dari Star Motor Jakarta, banyak faktor mesti diperhatikan. Bisa saja caplok per keras agar kuat. Namun risiko gesekkan tinggi dan tenaga mesin berkurang.

    Begitu juga menurut Tommy Huang yang pernah meriset per sampe ke Taiwan. Katanya lumayan susah untuk mencapai lift setinggi 9 mm. Karena pegas yang terlalu pendek dan bahan yang enggak kuat. Akhirnya pria berkamata itu cari aman, mematok lift Honda Karisma tim BRT (Bintang Racing Team) 6 mm.

    Hasil riset pegas dari penemu CDI Cibinong itu akhirnya dikomersialkan. Mengimport dari Taiwan khusus per ideal. Dikasih merek BRT (Bintang Racing Team).

    RUANG BAKAR DONGKRAK TORSI


    Buku panduan cara menggunakan Superflow juga menerangkan desain ruang bakar. Katanya ruang bakar yang bagus mampu mendongkrak torsi. Untuk mesin 1.000 cc torsi mengembang sampai 100-108 Nm.

    Untuk bebek lokal yang berada di rentang 110-125 cc, tinggal dibagi. Kenaikannya berkisar 10 Nm atau 1 kgm. Cukup lumayan.

    Perlu diketahui juga. Ruang bakar yang bagus mampu menimbulkan efek turbulensi gas bakar. Juga mampu mempersingkat waktu pembakaran. “Seting timing pengapian harus lebih mundur (retard),” jelas Benny yang belajar ilmu korek ke Swedia itu.

    Berarti efek turbulensi ruang bakar seperti mesin kompresi tinggi. Waktu pengapian harus mundur alias dekat TMA (Titik Mati Atas).

    http://www.blogger.com/feeds/9083873.../posts/default
    bagaimana cara mengungkapkan perasaan kepada yang dikasihi?<br />apakah arti cinta itu?<br /><br />~Race~

  4. #4
    Banned
    This user has no status.
     
    ----
     
    ~Race~ Masih Tahap Guest
    Join Date
    Aug 2008
    Posts
    86
    Post Thanks / Like
    Achievements

    Re: [INFO] seputar istilah dan ilmu belajar mesin kendaraan

    Compression Ratio… Apaan tuuh..???

    Posted by triatmono in Otomotif, Parts.
    trackback

    Banyak (at least adaa lah..) orang yang nggak tahu persis maksud nya compression ratio. Dan efeknya ngisi bensin semaunya aza… tanpa ngeliat hubungannya dengan compression ratio. Compression Ratio adalah ratio / perbandingan antara volume cylinder pada saat piston berada pada posisi bawah dengan volume cylinder pada saat piston berada di posisi atas. Nah, jika kita punya motor enginenya 150cc misalnya, jika compression rationya 10:1 misalnya, maka bisa dipastikan bahwa ketika piston naik dan memampatkan bensin dan udara, maka volumenya menjadi 15cc… sebelum terjadi pengapian…!!! Teruz persoalannya apa.. 15cc ataupun 30cc ekstremnya… efeknya apa… ??? kita lanjutin pembahasannya… ocreee… !!!

    Pernah makan mie ayam / pangsit.. waktu sekolah dulu…?? Itu punya kompor yang dipompa dulu.. teruz diisi dengan minyak tanah… pas dinyalain.. api nya gueede banget.. beda dengan kompor minyak tanah biasa.. yang nggak pake pompa-pompaan… !!! Demikian juga dengan motor yang punya compression ratio tinggi… maka sewaktu terjadi pengapian… maka powernya pun gueedeee… !!! Gimana jadinya kalau compression rationya gede… tapi bensinnya dikit.. kebanyakan udara aza.. atau ekstremnya udara doang.. yah.. nggak terjadi pengapian…!!! Karena volumenya semakin kecil.. sewaktu mengcompress… maka diperlukan bahan bakar yang mumpuni… agar mampu menendang piston balik… bahan bakar yang sedikit tapi mumpuni itu adalah octanenya kudu tinggi juga…

    Disamping itu… pada saat piston pada posisi tinggi.. maka perlu pengapian yang tepat.. artinya pas piston mentok..baru pengapian.. kalau belum mentok yah.. terjadi pre-ignition… powernya kurang.. !!! Teruz.. gimana rule of thumb nya… compression ratio dengan gue kudu ngisi bensin yang mana…??? Gampangnya rule of thumb nya adalah sbb :

    * Compression Ratio > 10:1, maka gunakan ******** Plus (RON 95)
    * Compression Ratio antara 9:1 s/d 10:1, maka gunakan ******** (RON 92)
    * Compression Ratio < 9:1, maka dapat gunakan Premium… (RON 88).

    Inga..inga.. yang kudu dipertimbangkan adalah RON nya.. bukan nama nya ******** atau apa… soalnya kalo ada (if pengandaian) SPBU yang nakal.. sehingga mengomplos maka octane nya turun… dan ini sama juga boong.. sehingga kadang kalau gue ragu.. makanya gue lebihin octanenya.. misalnya minum nya cukup premium.. yah dikasih ********.. sehingga kalau jelekpun.. masih sama…

    Kalau nggak diikuti rule of thumbs tersebut, lama-lama engine loe bisa rusak… yah pertama-tama ngelitik (knocking)… Jadi.. sayangilah engine motor loe.. daripada ganti partz dan sebagainya… kan lumayan…

    http://triatmono.wordpress.com/2007/...io-apaan-tuuh/
    bagaimana cara mengungkapkan perasaan kepada yang dikasihi?<br />apakah arti cinta itu?<br /><br />~Race~

  5. #5
    Banned
    This user has no status.
     
    ----
     
    ~Race~ Masih Tahap Guest
    Join Date
    Aug 2008
    Posts
    86
    Post Thanks / Like
    Achievements

    Re: [INFO] seputar istilah dan ilmu belajar mesin kendaraan

    MAIN JET & PILOT JET

    Seringkali masalah boros dan irit jadi pertimbangan bagi pemilik motor.

    Ini sedikit pengetahuan tentang karburator yang mengatur aliran bahan bakar (bensin) dari motor.


    Karburator bertugas mengatur campurang bensin yang masuk ke ruang bakar supaya kadar uap bensin dgn udara komposisinya sesuai. Dalam karburator standart ada 2 saluran yang berperan untuk pencampuran ini yaitu Main Jet dan Pilot Jet.


    Ketika gas ditarik, jarum skep akan terangkat sehingga hubungan dengan ruang bakar terbuka.
    Bensin di kolam bensin akan terhisap lewat lubang kecil Main jet menuju ruang bakar dalam bentuk uap bensin. Saat itu juga, pilot jet akan mengalirkan CAMPURAN uap bensin dan UDARA, sehingga terjadi pembakaran.

    Saat kita menyetel setelan angin, sebetulnya kita menyetel aliran udara yang akan dilewatkan oleh pilot jet.

    Ada juga yang disebut 'choke' yang biasa dipakai untuk membantu menyalakan motor saat pagi atau kondisi dingin. Fungsinya mengurangi aliran udara dari saluran filter udara, sehingga campuran yang masuk ke ruang bakar akan lebih kaya dengan bensin sehingga motor lebih mudah di starter.

    Jarum skep sendiri mempunyai tingkat penyetelan di dalam tabung skep yang dapat digunakan untuk mengatur kadar aliran uap bensin dari main&pilot jet ke arah ruang bakar.

    Ilustrasinya kira2 seperti ini:


    Ruang Bakar

    ^
    Skep

    ^
    Main Jet & Pilot Jet

    ^
    Bensin di kolam bensin



    Nah, sekarang kadar bensin yang sesuai itu gimana sih?
    Biasanya dilihat dari warna elektroda busi

    HITAM = BOROS/ kelebihan bensin
    COKLAT/MERAH BATA = pas/ pembakaran sempurna
    PUTIH = Kurang bensin

    Apakah kalo bensin irit itu bagus? Nggak juga karena akan menimbulkan efek mesin terlalu panas karena kurang bensin

    Apakah bensin diborosin itu pasti kenceng?? Nggak juga karena bensin yang berlebih malah menyebabkan pembakaran tidak sempurna. Bahkan sebagian akan terbakar di knalpot. Itu alasannya kadang ada knalpot yang suaranya meledak-ledak.

    Pengetahuan ini bisa digabungkan dengan yang dijelasin ama bos brondong tentang setting karburator


    Moga2 sedikit info ini bisa membantu temen2 yang mau coba2 ngeset sendiri karburatornya
    bagaimana cara mengungkapkan perasaan kepada yang dikasihi?<br />apakah arti cinta itu?<br /><br />~Race~

  6. #6
    ~Newbie~
    This user has no status.
     
    ----
     
    ~BLacK AngeL~ Masih Tahap Guest
    Join Date
    Jul 2008
    Posts
    49
    Post Thanks / Like

    Re: [INFO] seputar istilah dan ilmu belajar mesin kendaraan

    maw tanya dong tntang motor
    klo modif motor smacem spion na, cat, dll dll bwat motor mio
    kira2 msti siap duit brapa ya?

    thx b4~
    dilarang memakai signature dengan link menuju webiste lain selain forum.<br /> terima kasih...<br />

  7. #7
    Moderator
    This user has no status.
     
    ----
     
    ~ÆonFlux~ Harapan Baru Forum
    Join Date
    Oct 2008
    Posts
    122
    Post Thanks / Like
    Achievements

    Re: [INFO] seputar istilah dan ilmu belajar mesin kendaraan

    kl cuma itu aja sih yg mahal cm di cat.
    kl ga salah sih acc buat mio murah2

    yg buat gantungan itu kl ga salah ya dibawah 50rb apa dibwah 100rb ya.
    itu gantungan yg ky kawat gitu.
    trus yg buat karet di bawah jg dibawah 100rb kl ga salah jg si
    [color=red]<br />Regards<br /><br />~ÆonFlux~

  8. #8
    Just Seeing
    This user has no status.
     
    ----
     
    mR-aUTieS Masih Tahap Guest
    Join Date
    Mar 2009
    Posts
    1
    Post Thanks / Like

    Re: [INFO] seputar istilah dan ilmu belajar mesin kendaraan

    Motor 4Tak (empat langkah) identik dengan motor lelet atau lambat, tetapi bagus dalam jarak tempuh yang cukup jauh, selain irit mtotor tersebut bandel dalam hal mesin.. tetapi ada sebagian orang menilai motor tersebut susuh untuk di utak atik, tetapi dengan perkembangan teknologi sekarang pihak pabrikan sudah mulai tanggap akan ke mauan konsumen..seperti pihak honda yang mengeluarkan honda blade untuk pasaran masal yang sudah identik dengan high speed dengan di terapkannya roler pada rockerarm untuk mengurangi gesekan dan speed yang tak terhalang, yamaha dengan vega zr nya yang mengusung mesin 115cc sama dengan generasi mio. itu adalah contoh bahwa zaman sekarang mesin motor 4 langkah mulai di kembangkan teknologinya. namun untuk beberapa kalangan ada yang masih belum puas dalam kinerja mesin yang dibuat pabrikan, mereka sedikit merubah kinerja mesin pabrikan untuk di modif bahkan tak jarang untuk race. ada beberapa yang bisa di modif dari mesin standar pabrikan diantara nya :
    Melancarkan saluran bensin masuk mesin ( Poilish )
    maksudnya mengikis kulit jeruk, saluran bensin seperti leher angsa dan head silinder untuk memaksimalkan masuknya bahan bakar, tanpa ada hambatan lagi yaitu dengan cara menggosok bagian leher angsa dengan amplas atau pisau tuner.. trus gosok deh pake batu ijo atau langsol yang bisa di beli di toko teknik atau sperpart seharga 30 ribu per batang karena bentuknya mirip sabun batangan. tak ketinggalan head silinder (silider cop) juga kena amplas di jalur masuk bensin (setelah leher angsa) caranya buka dulu head dengan kunci 12, timing chains di buka juga lho.. setealh lepas dari blok silinder trus gosok deh pake amplas, klo ga mau capek posisi klep jangan di buka tapi dalam keadaan top , lakukan seperti menggosok leher angsa (manipol). klo semua sudah beres jangan lupa tuh bersihin pake bensin trus semprot pake angin compresor ulangi sampai beberapa kali supaya tidak ada bram (kotoran besi) yang masuk ke mesin. et.. jangan lupa atur tuh spuyer di karbu biar ga ke gerahan tuh mesin, biasanya tuk motor honda grand-supraX 125 cukup ganti pilot jet dengan rata-rata kenaikan 2-5 step, klo grand-supra 100cc cukup ganti pilot jet asli 38 menjadi 40, di toko variasi banyak sekitar 20 ribuan..merk Kitaco, X-trime banyak di pasaran.. tapi untuk honda karisma-supra X 125 asli 35 bisa naik ke 38-40 ok.. trus jangan lupa pasang lagi head sam karbu, trus setel putaran angin sampai pas..siap deh tarik tuh motor..ati-ati ni cuma buat harian aja lho.. tar nyambung lagi ya..di bagian kedua...

  9. #9
    ~Senior Poster~
    This user has no status.
     
    ----
     
    =*R*= Masih Tahap Guest
    Join Date
    Jul 2008
    Posts
    629
    Post Thanks / Like
    Achievements

    Re: [INFO] seputar istilah dan ilmu belajar mesin kendaraan

    Honda Chassis Codes

    1994-1997 Honda Accord CD
    1998- Honda Accord CG
    1988-1991 Honda Civic/CR-X EF
    1992-1995 Honda Civic (2dr) EG2
    1992-1995 Honda Civic (3dr) EG6
    1992-1995 Honda Civic (4dr) EG9
    1996-2000 Honda Civic (2dr) EK2
    1996-2000 Honda Civic (3dr) EK6
    2001- Honda Civic (2dr) ES
    2001- Honda Civic (3dr) EP
    1994-2001 Honda Integra DC2
    2002- Honda Integra DC5
    1991-1995 Honda Legend KA7
    1992-1996 Honda Prelude BB1
    1997- Honda Prelude BB6
    1991- Honda NSX NA1
    1999- Honda S2000 AP1

    Nissan Chassis Codes

    1984-1988 Nissan 200sx RS12 CA18ET (R for hatchback)
    1984-1989 Nissan 200sx PS12 CA20E (notchback)
    1984-1988 Nissan 200sx RPS12 CA20E (R for hatchback)
    1986-1988 Nissan 200sx RVS12 VG30E (R for hatchback)
    1988-1990 Nissan Silvia S13 CA18DET
    1990-1991 Nissan 180SX RS13 CA18DET (R for fastback)
    1991-1993 Nissan Silvia PS13 SR20DET (P for SR)
    1991-1998 Nissan 180SX RPS13 SR20DET
    1991-1993 Nissan Silvia (K for SuperHicas) KPS13
    1991-1993 Nissan 180SX KRPS13
    1989-1990 Nissan 240SX HS13 KA24E (H for KA24E)
    1989-1990 Nissan 240SX RHS13 FB
    1991-1994 Nissan 240SX MS13
    1991-1993 Nissan 240SX RMS13FB(M for KA24DE)
    1991-1993 Nissan 240SX FB w/ SuperHicas KRMS13
    1991-1993 Nissan 240SX w/ SuperHicas (Canadian market only). KMS13
    1994-1998 Nissan Silvia SR20DET S14
    1994-1998 Nissan Silvia w/ SuperHicas CS14
    1995-1998 Nissan 240SX KA24DE (no specific S14 code for KA24DE) S14
    1995-1998 Nissan 200sx B14
    1995-1998 Nissan 240sX S14
    1999-2001 Nissan 240sx S15
    1990-1996 Nissan 300zx Z32
    2003- Nissan 350z Z33
    1995-1999 Nissan Maxima A32
    2000- Nissan Maxima A33
    1991-1994 Nissan Sentra B13
    1995-1998 Nissan Sentra B14
    1999- Nissan Sentra B15
    1989-1994 Nissan Skyline BNR32
    1995-1998 Nissan Skyline BCNR33
    1999- Nissan Skyline BNR34

    Infiniti Chassis Codes

    1991-1996 Infiniti G20 HP10
    1997- Infiniti G20 HP11
    2003- Infiniti G35 (Coupe) V35
    2003- Infiniti G35 (Sedan) V35
    1995-1999 Infiniti I30 A32
    2000- Infiniti I30 A33
    1994-1996 Infiniti Q45 G50
    1997-2000 Infiniti Q45 Y33

    Mitsubishi Chassis Codes

    1990-1999 Mitsubishi 3000GT (FF) Z11A
    1990-1999 Mitsubishi 3000GT vr-4 (AWD) Z16A
    1992-1996 Mitsubishi Diamante F15A
    1989-1994 Mitsubishi Eclipse (FF) D22A
    1989-1994 Mitsubishi Eclipse (AWD) D27
    1995-1999 Mitsubishi Eclipse D32A
    2000- Mitsubishi Eclipse (2.4L) D52
    2000- Mitsubishi Eclipse (3.0L) D53
    1989-1992 Mitsubishi Gallant E39A
    1999- Mitsubishi Gallant EA8A
    2001- Mitsubishi Lancer CS6A
    1992-1995 Mitsubishi Lancer Evo 1/2/3 CD(E)9A
    1996-1997 Mitsubishi Lancer Evo 4 CN9A
    1998-2000 Mitsubishi Lancer Evo 5/6 CP9A
    2001- Mitsubishi Lancer Evo 7/8 CT9A
    1991-1995 Mitsubishi Mirage CA4A
    1996- Mitsubishi Mirage CJ4A

    Mazda Chassis Codes

    1969-1971 R100 - M10A
    1970-1976 RX-2 - S122A
    1972-1976 RX-3 - S102A (Series 1 10A models)
    1972-1976 RX-3 - S102A S124A (Series 2 12A models)
    1973-1979 RX-4 - LA22S (Series 1 12A models)
    1973-1979 RX-4 LA23S (Series 2 & 3 13B models)
    1979-1985 RX-7 - SA22C
    1990-1996 Cosmo - JC-3SE / JC-3S (13B Model), JC-ESE / JC-ES (20B Model)
    2003- Mazda 6 - GG3S
    1987-1992 Mazda RX7 FC3S
    1993-1995 Mazda RX7 FD3S
    2004- Mazda RX8 FE3S
    1989-1996 Mazda Miata NA6(8)C
    1998- Mazda Miata NB8c Honda Chassis Codes

    1994-1997 Honda Accord CD
    1998- Honda Accord CG
    1988-1991 Honda Civic/CR-X EF
    1992-1995 Honda Civic (2dr) EG2
    1992-1995 Honda Civic (3dr) EG6
    1992-1995 Honda Civic (4dr) EG9
    1996-2000 Honda Civic (2dr) EK2
    1996-2000 Honda Civic (3dr) EK6
    2001- Honda Civic (2dr) ES
    2001- Honda Civic (3dr) EP
    1994-2001 Honda Integra DC2
    2002- Honda Integra DC5
    1991-1995 Honda Legend KA7
    1992-1996 Honda Prelude BB1
    1997- Honda Prelude BB6
    1991- Honda NSX NA1
    1999- Honda S2000 AP1

    Nissan Chassis Codes

    1984-1988 Nissan 200sx RS12 CA18ET (R for hatchback)
    1984-1989 Nissan 200sx PS12 CA20E (notchback)
    1984-1988 Nissan 200sx RPS12 CA20E (R for hatchback)
    1986-1988 Nissan 200sx RVS12 VG30E (R for hatchback)
    1988-1990 Nissan Silvia S13 CA18DET
    1990-1991 Nissan 180SX RS13 CA18DET (R for fastback)
    1991-1993 Nissan Silvia PS13 SR20DET (P for SR)
    1991-1998 Nissan 180SX RPS13 SR20DET
    1991-1993 Nissan Silvia (K for SuperHicas) KPS13
    1991-1993 Nissan 180SX KRPS13
    1989-1990 Nissan 240SX HS13 KA24E (H for KA24E)
    1989-1990 Nissan 240SX RHS13 FB
    1991-1994 Nissan 240SX MS13
    1991-1993 Nissan 240SX RMS13FB(M for KA24DE)
    1991-1993 Nissan 240SX FB w/ SuperHicas KRMS13
    1991-1993 Nissan 240SX w/ SuperHicas (Canadian market only). KMS13
    1994-1998 Nissan Silvia SR20DET S14
    1994-1998 Nissan Silvia w/ SuperHicas CS14
    1995-1998 Nissan 240SX KA24DE (no specific S14 code for KA24DE) S14
    1995-1998 Nissan 200sx B14
    1995-1998 Nissan 240sX S14
    1999-2001 Nissan 240sx S15
    1990-1996 Nissan 300zx Z32
    2003- Nissan 350z Z33
    1995-1999 Nissan Maxima A32
    2000- Nissan Maxima A33
    1991-1994 Nissan Sentra B13
    1995-1998 Nissan Sentra B14
    1999- Nissan Sentra B15
    1989-1994 Nissan Skyline BNR32
    1995-1998 Nissan Skyline BCNR33
    1999- Nissan Skyline BNR34

    Infiniti Chassis Codes

    1991-1996 Infiniti G20 HP10
    1997- Infiniti G20 HP11
    2003- Infiniti G35 (Coupe) V35
    2003- Infiniti G35 (Sedan) V35
    1995-1999 Infiniti I30 A32
    2000- Infiniti I30 A33
    1994-1996 Infiniti Q45 G50
    1997-2000 Infiniti Q45 Y33

    Mitsubishi Chassis Codes

    1990-1999 Mitsubishi 3000GT (FF) Z11A
    1990-1999 Mitsubishi 3000GT vr-4 (AWD) Z16A
    1992-1996 Mitsubishi Diamante F15A
    1989-1994 Mitsubishi Eclipse (FF) D22A
    1989-1994 Mitsubishi Eclipse (AWD) D27
    1995-1999 Mitsubishi Eclipse D32A
    2000- Mitsubishi Eclipse (2.4L) D52
    2000- Mitsubishi Eclipse (3.0L) D53
    1989-1992 Mitsubishi Gallant E39A
    1999- Mitsubishi Gallant EA8A
    2001- Mitsubishi Lancer CS6A
    1992-1995 Mitsubishi Lancer Evo 1/2/3 CD(E)9A
    1996-1997 Mitsubishi Lancer Evo 4 CN9A
    1998-2000 Mitsubishi Lancer Evo 5/6 CP9A
    2001- Mitsubishi Lancer Evo 7/8 CT9A
    1991-1995 Mitsubishi Mirage CA4A
    1996- Mitsubishi Mirage CJ4A

    Mazda Chassis Codes

    1969-1971 R100 - M10A
    1970-1976 RX-2 - S122A
    1972-1976 RX-3 - S102A (Series 1 10A models)
    1972-1976 RX-3 - S102A S124A (Series 2 12A models)
    1973-1979 RX-4 - LA22S (Series 1 12A models)
    1973-1979 RX-4 LA23S (Series 2 & 3 13B models)
    1979-1985 RX-7 - SA22C
    1990-1996 Cosmo - JC-3SE / JC-3S (13B Model), JC-ESE / JC-ES (20B Model)
    2003- Mazda 6 - GG3S
    1987-1992 Mazda RX7 FC3S
    1993-1995 Mazda RX7 FD3S
    2004- Mazda RX8 FE3S
    1989-1996 Mazda Miata NA6(8)C
    1998- Mazda Miata NB8c
    1999- Mazda Protégé BJFP
    1999- Mazda Protégé 5 BJFW

    Subaru Chassis Codes

    1998-2001 Subaru Impreza (2dr) GC8
    2002- Subaru Impreza (4DR/Wagon) GSA
    2002- Subaru Impreza WRX GDA
    1990-1994 Subaru Legacy BC5
    1995-1999 Subaru Legacy BD5
    2000- Subaru Legacy BE5

    Toyota Chassis Codes

    1997- Toyota Camry MCV20L
    1990-1993 Toyota Celica (FF) ST183
    1990-1993 Toyota Celica (AWD) ST185
    1994-1999 Toyota Celica ST202
    2000- Toyota Celica ZZT231
    1983-1986 Toyota Corolla AE86
    1987-1992 Toyota Corolla AE92
    1993-1997 Toyota Corolla AE101
    1998- Toyota Corolla ZZE110
    2002- Toyota Matrix ZZE133L
    1984-1990 Toyota MR2 AW11
    1991-1996 Toyota MR2 SW20
    2001- Toyota MR2 Spyder ZZW30
    1999- Toyota Solara MCV20L
    1987-1992 Toyota Supra JZA70
    1993-1998 Toyota Supra JZA80
    1971-1974 Toyota corolla TE27
    1982-1986 Toyota celica/celica supra RA64

    Lexus Chassis Codes

    1997-2001 Lexus ES300 MCV20L
    1993-1997 Lexus GS300/400 JZS147
    1998- Lexus GS300/400 JZS161
    2001- Lexus IS300 JCE10L
    1991-2000 Lexus LS400 UCF10/UCF20 1992-2000 Lexus SC300/400 JZZ30Honda Chassis Codes

    1994-1997 Honda Accord CD
    1998- Honda Accord CG
    1988-1991 Honda Civic/CR-X EF
    1992-1995 Honda Civic (2dr) EG2
    1992-1995 Honda Civic (3dr) EG6
    1992-1995 Honda Civic (4dr) EG9
    1996-2000 Honda Civic (2dr) EK2
    1996-2000 Honda Civic (3dr) EK6
    2001- Honda Civic (2dr) ES
    2001- Honda Civic (3dr) EP
    1994-2001 Honda Integra DC2
    2002- Honda Integra DC5
    1991-1995 Honda Legend KA7
    1992-1996 Honda Prelude BB1
    1997- Honda Prelude BB6
    1991- Honda NSX NA1
    1999- Honda S2000 AP1

    Nissan Chassis Codes

    1984-1988 Nissan 200sx RS12 CA18ET (R for hatchback)
    1984-1989 Nissan 200sx PS12 CA20E (notchback)
    1984-1988 Nissan 200sx RPS12 CA20E (R for hatchback)
    1986-1988 Nissan 200sx RVS12 VG30E (R for hatchback)
    1988-1990 Nissan Silvia S13 CA18DET
    1990-1991 Nissan 180SX RS13 CA18DET (R for fastback)
    1991-1993 Nissan Silvia PS13 SR20DET (P for SR)
    1991-1998 Nissan 180SX RPS13 SR20DET
    1991-1993 Nissan Silvia (K for SuperHicas) KPS13
    1991-1993 Nissan 180SX KRPS13
    1989-1990 Nissan 240SX HS13 KA24E (H for KA24E)
    1989-1990 Nissan 240SX RHS13 FB
    1991-1994 Nissan 240SX MS13
    1991-1993 Nissan 240SX RMS13FB(M for KA24DE)
    1991-1993 Nissan 240SX FB w/ SuperHicas KRMS13
    1991-1993 Nissan 240SX w/ SuperHicas (Canadian market only). KMS13
    1994-1998 Nissan Silvia SR20DET S14
    1994-1998 Nissan Silvia w/ SuperHicas CS14
    1995-1998 Nissan 240SX KA24DE (no specific S14 code for KA24DE) S14
    1995-1998 Nissan 200sx B14
    1995-1998 Nissan 240sX S14
    1999-2001 Nissan 240sx S15
    1990-1996 Nissan 300zx Z32
    2003- Nissan 350z Z33
    1995-1999 Nissan Maxima A32
    2000- Nissan Maxima A33
    1991-1994 Nissan Sentra B13
    1995-1998 Nissan Sentra B14
    1999- Nissan Sentra B15
    1989-1994 Nissan Skyline BNR32
    1995-1998 Nissan Skyline BCNR33
    1999- Nissan Skyline BNR34

    Infiniti Chassis Codes

    1991-1996 Infiniti G20 HP10
    1997- Infiniti G20 HP11
    2003- Infiniti G35 (Coupe) V35
    2003- Infiniti G35 (Sedan) V35
    1995-1999 Infiniti I30 A32
    2000- Infiniti I30 A33
    1994-1996 Infiniti Q45 G50
    1997-2000 Infiniti Q45 Y33

    Mitsubishi Chassis Codes

    1990-1999 Mitsubishi 3000GT (FF) Z11A
    1990-1999 Mitsubishi 3000GT vr-4 (AWD) Z16A
    1992-1996 Mitsubishi Diamante F15A
    1989-1994 Mitsubishi Eclipse (FF) D22A
    1989-1994 Mitsubishi Eclipse (AWD) D27
    1995-1999 Mitsubishi Eclipse D32A
    2000- Mitsubishi Eclipse (2.4L) D52
    2000- Mitsubishi Eclipse (3.0L) D53
    1989-1992 Mitsubishi Gallant E39A
    1999- Mitsubishi Gallant EA8A
    2001- Mitsubishi Lancer CS6A
    1992-1995 Mitsubishi Lancer Evo 1/2/3 CD(E)9A
    1996-1997 Mitsubishi Lancer Evo 4 CN9A
    1998-2000 Mitsubishi Lancer Evo 5/6 CP9A
    2001- Mitsubishi Lancer Evo 7/8 CT9A
    1991-1995 Mitsubishi Mirage CA4A
    1996- Mitsubishi Mirage CJ4A

    Mazda Chassis Codes

    1969-1971 R100 - M10A
    1970-1976 RX-2 - S122A
    1972-1976 RX-3 - S102A (Series 1 10A models)
    1972-1976 RX-3 - S102A S124A (Series 2 12A models)
    1973-1979 RX-4 - LA22S (Series 1 12A models)
    1973-1979 RX-4 LA23S (Series 2 & 3 13B models)
    1979-1985 RX-7 - SA22C
    1990-1996 Cosmo - JC-3SE / JC-3S (13B Model), JC-ESE / JC-ES (20B Model)
    2003- Mazda 6 - GG3S
    1987-1992 Mazda RX7 FC3S
    1993-1995 Mazda RX7 FD3S
    2004- Mazda RX8 FE3S
    1989-1996 Mazda Miata NA6(8)C
    1998- Mazda Miata NB8c
    1999- Mazda Protégé BJFP
    1999- Mazda Protégé 5 BJFW

    Subaru Chassis Codes

    1998-2001 Subaru Impreza (2dr) GC8
    2002- Subaru Impreza (4DR/Wagon) GSA
    2002- Subaru Impreza WRX GDA
    1990-1994 Subaru Legacy BC5
    1995-1999 Subaru Legacy BD5
    2000- Subaru Legacy BE5

    Toyota Chassis Codes

    1997- Toyota Camry MCV20L
    1990-1993 Toyota Celica (FF) ST183
    1990-1993 Toyota Celica (AWD) ST185
    1994-1999 Toyota Celica ST202
    2000- Toyota Celica ZZT231
    1983-1986 Toyota Corolla AE86
    1987-1992 Toyota Corolla AE92
    1993-1997 Toyota Corolla AE101
    1998- Toyota Corolla ZZE110
    2002- Toyota Matrix ZZE133L
    1984-1990 Toyota MR2 AW11
    1991-1996 Toyota MR2 SW20
    2001- Toyota MR2 Spyder ZZW30
    1999- Toyota Solara MCV20L
    1987-1992 Toyota Supra JZA70
    1993-1998 Toyota Supra JZA80
    1971-1974 Toyota corolla TE27
    1982-1986 Toyota celica/celica supra RA64

    Lexus Chassis Codes

    1997-2001 Lexus ES300 MCV20L
    1993-1997 Lexus GS300/400 JZS147
    1998- Lexus GS300/400 JZS161
    2001- Lexus IS300 JCE10L
    1991-2000 Lexus LS400 UCF10/UCF20 1992-2000 Lexus SC300/400 JZZ30Honda Chassis Codes

    1994-1997 Honda Accord CD
    1998- Honda Accord CG
    1988-1991 Honda Civic/CR-X EF
    1992-1995 Honda Civic (2dr) EG2
    1992-1995 Honda Civic (3dr) EG6
    1992-1995 Honda Civic (4dr) EG9
    1996-2000 Honda Civic (2dr) EK2
    1996-2000 Honda Civic (3dr) EK6
    2001- Honda Civic (2dr) ES
    2001- Honda Civic (3dr) EP
    1994-2001 Honda Integra DC2
    2002- Honda Integra DC5
    1991-1995 Honda Legend KA7
    1992-1996 Honda Prelude BB1
    1997- Honda Prelude BB6
    1991- Honda NSX NA1
    1999- Honda S2000 AP1

    Nissan Chassis Codes

    1984-1988 Nissan 200sx RS12 CA18ET (R for hatchback)
    1984-1989 Nissan 200sx PS12 CA20E (notchback)
    1984-1988 Nissan 200sx RPS12 CA20E (R for hatchback)
    1986-1988 Nissan 200sx RVS12 VG30E (R for hatchback)
    1988-1990 Nissan Silvia S13 CA18DET
    1990-1991 Nissan 180SX RS13 CA18DET (R for fastback)
    1991-1993 Nissan Silvia PS13 SR20DET (P for SR)
    1991-1998 Nissan 180SX RPS13 SR20DET
    1991-1993 Nissan Silvia (K for SuperHicas) KPS13
    1991-1993 Nissan 180SX KRPS13
    1989-1990 Nissan 240SX HS13 KA24E (H for KA24E)
    1989-1990 Nissan 240SX RHS13 FB
    1991-1994 Nissan 240SX MS13
    1991-1993 Nissan 240SX RMS13FB(M for KA24DE)
    1991-1993 Nissan 240SX FB w/ SuperHicas KRMS13
    1991-1993 Nissan 240SX w/ SuperHicas (Canadian market only). KMS13
    1994-1998 Nissan Silvia SR20DET S14
    1994-1998 Nissan Silvia w/ SuperHicas CS14
    1995-1998 Nissan 240SX KA24DE (no specific S14 code for KA24DE) S14
    1995-1998 Nissan 200sx B14
    1995-1998 Nissan 240sX S14
    1999-2001 Nissan 240sx S15
    1990-1996 Nissan 300zx Z32
    2003- Nissan 350z Z33
    1995-1999 Nissan Maxima A32
    2000- Nissan Maxima A33
    1991-1994 Nissan Sentra B13
    1995-1998 Nissan Sentra B14
    1999- Nissan Sentra B15
    1989-1994 Nissan Skyline BNR32
    1995-1998 Nissan Skyline BCNR33
    1999- Nissan Skyline BNR34

    Infiniti Chassis Codes

    1991-1996 Infiniti G20 HP10
    1997- Infiniti G20 HP11
    2003- Infiniti G35 (Coupe) V35
    2003- Infiniti G35 (Sedan) V35
    1995-1999 Infiniti I30 A32
    2000- Infiniti I30 A33
    1994-1996 Infiniti Q45 G50
    1997-2000 Infiniti Q45 Y33

    Mitsubishi Chassis Codes

    1990-1999 Mitsubishi 3000GT (FF) Z11A
    1990-1999 Mitsubishi 3000GT vr-4 (AWD) Z16A
    1992-1996 Mitsubishi Diamante F15A
    1989-1994 Mitsubishi Eclipse (FF) D22A
    1989-1994 Mitsubishi Eclipse (AWD) D27
    1995-1999 Mitsubishi Eclipse D32A
    2000- Mitsubishi Eclipse (2.4L) D52
    2000- Mitsubishi Eclipse (3.0L) D53
    1989-1992 Mitsubishi Gallant E39A
    1999- Mitsubishi Gallant EA8A
    2001- Mitsubishi Lancer CS6A
    1992-1995 Mitsubishi Lancer Evo 1/2/3 CD(E)9A
    1996-1997 Mitsubishi Lancer Evo 4 CN9A
    1998-2000 Mitsubishi Lancer Evo 5/6 CP9A
    2001- Mitsubishi Lancer Evo 7/8 CT9A
    1991-1995 Mitsubishi Mirage CA4A
    1996- Mitsubishi Mirage CJ4A

    Mazda Chassis Codes

    1969-1971 R100 - M10A
    1970-1976 RX-2 - S122A
    1972-1976 RX-3 - S102A (Series 1 10A models)
    1972-1976 RX-3 - S102A S124A (Series 2 12A models)
    1973-1979 RX-4 - LA22S (Series 1 12A models)
    1973-1979 RX-4 LA23S (Series 2 & 3 13B models)
    1979-1985 RX-7 - SA22C
    1990-1996 Cosmo - JC-3SE / JC-3S (13B Model), JC-ESE / JC-ES (20B Model)
    2003- Mazda 6 - GG3S
    1987-1992 Mazda RX7 FC3S
    1993-1995 Mazda RX7 FD3S
    2004- Mazda RX8 FE3S
    1989-1996 Mazda Miata NA6(8)C
    1998- Mazda Miata NB8c
    1999- Mazda Protégé BJFP
    1999- Mazda Protégé 5 BJFW

    Subaru Chassis Codes

    1998-2001 Subaru Impreza (2dr) GC8
    2002- Subaru Impreza (4DR/Wagon) GSA
    2002- Subaru Impreza WRX GDA
    1990-1994 Subaru Legacy BC5
    1995-1999 Subaru Legacy BD5
    2000- Subaru Legacy BE5

    Toyota Chassis Codes

    1997- Toyota Camry MCV20L
    1990-1993 Toyota Celica (FF) ST183
    1990-1993 Toyota Celica (AWD) ST185
    1994-1999 Toyota Celica ST202
    2000- Toyota Celica ZZT231
    1983-1986 Toyota Corolla AE86
    1987-1992 Toyota Corolla AE92
    1993-1997 Toyota Corolla AE101
    1998- Toyota Corolla ZZE110
    2002- Toyota Matrix ZZE133L
    1984-1990 Toyota MR2 AW11
    1991-1996 Toyota MR2 SW20
    2001- Toyota MR2 Spyder ZZW30
    1999- Toyota Solara MCV20L
    1987-1992 Toyota Supra JZA70
    1993-1998 Toyota Supra JZA80
    1971-1974 Toyota corolla TE27
    1982-1986 Toyota celica/celica supra RA64

    Lexus Chassis Codes

    1997-2001 Lexus ES300 MCV20L
    1993-1997 Lexus GS300/400 JZS147
    1998- Lexus GS300/400 JZS161
    2001- Lexus IS300 JCE10L
    1991-2000 Lexus LS400 UCF10/UCF20 1992-2000 Lexus SC300/400 JZZ30Honda Chassis Codes

    1994-1997 Honda Accord CD
    1998- Honda Accord CG
    1988-1991 Honda Civic/CR-X EF
    1992-1995 Honda Civic (2dr) EG2
    1992-1995 Honda Civic (3dr) EG6
    1992-1995 Honda Civic (4dr) EG9
    1996-2000 Honda Civic (2dr) EK2
    1996-2000 Honda Civic (3dr) EK6
    2001- Honda Civic (2dr) ES
    2001- Honda Civic (3dr) EP
    1994-2001 Honda Integra DC2
    2002- Honda Integra DC5
    1991-1995 Honda Legend KA7
    1992-1996 Honda Prelude BB1
    1997- Honda Prelude BB6
    1991- Honda NSX NA1
    1999- Honda S2000 AP1

    Nissan Chassis Codes

    1984-1988 Nissan 200sx RS12 CA18ET (R for hatchback)
    1984-1989 Nissan 200sx PS12 CA20E (notchback)
    1984-1988 Nissan 200sx RPS12 CA20E (R for hatchback)
    1986-1988 Nissan 200sx RVS12 VG30E (R for hatchback)
    1988-1990 Nissan Silvia S13 CA18DET
    1990-1991 Nissan 180SX RS13 CA18DET (R for fastback)
    1991-1993 Nissan Silvia PS13 SR20DET (P for SR)
    1991-1998 Nissan 180SX RPS13 SR20DET
    1991-1993 Nissan Silvia (K for SuperHicas) KPS13
    1991-1993 Nissan 180SX KRPS13
    1989-1990 Nissan 240SX HS13 KA24E (H for KA24E)
    1989-1990 Nissan 240SX RHS13 FB
    1991-1994 Nissan 240SX MS13
    1991-1993 Nissan 240SX RMS13FB(M for KA24DE)
    1991-1993 Nissan 240SX FB w/ SuperHicas KRMS13
    1991-1993 Nissan 240SX w/ SuperHicas (Canadian market only). KMS13
    1994-1998 Nissan Silvia SR20DET S14
    1994-1998 Nissan Silvia w/ SuperHicas CS14
    1995-1998 Nissan 240SX KA24DE (no specific S14 code for KA24DE) S14
    1995-1998 Nissan 200sx B14
    1995-1998 Nissan 240sX S14
    1999-2001 Nissan 240sx S15
    1990-1996 Nissan 300zx Z32
    2003- Nissan 350z Z33
    1995-1999 Nissan Maxima A32
    2000- Nissan Maxima A33
    1991-1994 Nissan Sentra B13
    1995-1998 Nissan Sentra B14
    1999- Nissan Sentra B15
    1989-1994 Nissan Skyline BNR32
    1995-1998 Nissan Skyline BCNR33
    1999- Nissan Skyline BNR34

    Infiniti Chassis Codes

    1991-1996 Infiniti G20 HP10
    1997- Infiniti G20 HP11
    2003- Infiniti G35 (Coupe) V35
    2003- Infiniti G35 (Sedan) V35
    1995-1999 Infiniti I30 A32
    2000- Infiniti I30 A33
    1994-1996 Infiniti Q45 G50
    1997-2000 Infiniti Q45 Y33

    Mitsubishi Chassis Codes

    1990-1999 Mitsubishi 3000GT (FF) Z11A
    1990-1999 Mitsubishi 3000GT vr-4 (AWD) Z16A
    1992-1996 Mitsubishi Diamante F15A
    1989-1994 Mitsubishi Eclipse (FF) D22A
    1989-1994 Mitsubishi Eclipse (AWD) D27
    1995-1999 Mitsubishi Eclipse D32A
    2000- Mitsubishi Eclipse (2.4L) D52
    2000- Mitsubishi Eclipse (3.0L) D53
    1989-1992 Mitsubishi Gallant E39A
    1999- Mitsubishi Gallant EA8A
    2001- Mitsubishi Lancer CS6A
    1992-1995 Mitsubishi Lancer Evo 1/2/3 CD(E)9A
    1996-1997 Mitsubishi Lancer Evo 4 CN9A
    1998-2000 Mitsubishi Lancer Evo 5/6 CP9A
    2001- Mitsubishi Lancer Evo 7/8 CT9A
    1991-1995 Mitsubishi Mirage CA4A
    1996- Mitsubishi Mirage CJ4A

    Mazda Chassis Codes

    1969-1971 R100 - M10A
    1970-1976 RX-2 - S122A
    1972-1976 RX-3 - S102A (Series 1 10A models)
    1972-1976 RX-3 - S102A S124A (Series 2 12A models)
    1973-1979 RX-4 - LA22S (Series 1 12A models)
    1973-1979 RX-4 LA23S (Series 2 & 3 13B models)
    1979-1985 RX-7 - SA22C
    1990-1996 Cosmo - JC-3SE / JC-3S (13B Model), JC-ESE / JC-ES (20B Model)
    2003- Mazda 6 - GG3S
    1987-1992 Mazda RX7 FC3S
    1993-1995 Mazda RX7 FD3S
    2004- Mazda RX8 FE3S
    1989-1996 Mazda Miata NA6(8)C
    1998- Mazda Miata NB8c
    1999- Mazda Protégé BJFP
    1999- Mazda Protégé 5 BJFW

    Subaru Chassis Codes

    1998-2001 Subaru Impreza (2dr) GC8
    2002- Subaru Impreza (4DR/Wagon) GSA
    2002- Subaru Impreza WRX GDA
    1990-1994 Subaru Legacy BC5
    1995-1999 Subaru Legacy BD5
    2000- Subaru Legacy BE5

    Toyota Chassis Codes

    1997- Toyota Camry MCV20L
    1990-1993 Toyota Celica (FF) ST183
    1990-1993 Toyota Celica (AWD) ST185
    1994-1999 Toyota Celica ST202
    2000- Toyota Celica ZZT231
    1983-1986 Toyota Corolla AE86
    1987-1992 Toyota Corolla AE92
    1993-1997 Toyota Corolla AE101
    1998- Toyota Corolla ZZE110
    2002- Toyota Matrix ZZE133L
    1984-1990 Toyota MR2 AW11
    1991-1996 Toyota MR2 SW20
    2001- Toyota MR2 Spyder ZZW30
    1999- Toyota Solara MCV20L
    1987-1992 Toyota Supra JZA70
    1993-1998 Toyota Supra JZA80
    1971-1974 Toyota corolla TE27
    1982-1986 Toyota celica/celica supra RA64

    Lexus Chassis Codes

    1997-2001 Lexus ES300 MCV20L
    1993-1997 Lexus GS300/400 JZS147
    1998- Lexus GS300/400 JZS161
    2001- Lexus IS300 JCE10L
    1991-2000 Lexus LS400 UCF10/UCF20 1992-2000 Lexus SC300/400 JZZ30
    TaeYoon &lt;3

  10. #10
    ~Senior Poster~
    This user has no status.
     
    ----
     
    =*R*= Masih Tahap Guest
    Join Date
    Jul 2008
    Posts
    629
    Post Thanks / Like
    Achievements

    Re: [INFO] seputar istilah dan ilmu belajar mesin kendaraan

    Supercharger lebih baik digunakan untuk Mesin SOHC yang mempunyai tingkat REV rendah, sedangkan Turbo lebih baik digunakan untuk Mesin DOHC, dimana tingkat REV lebih tinggi, akan tetapi Supercharger tidak mempunyai Lag, Turbo mempunyai lag

    Supercharger mengambil kekuatan lari dari Mesin itu sendiri, sedangkan Turbo mengambil kekuatan dari gas exhaust, dan bukan mesin

    Supercharger biasanya bagus untuk Big V Engine Block Application dikarenakan sempitnya ruang yang ada di comparment. Supercharger bagus digunakan untuk kekuatan yang konstan dalam Powerband, karena tidak ada lag juga, kekuatanya sangat cepat untuk Low-End

    sayangnya, Supercharger lebih gampang rusak/potensialnya berkurang lebih cepat dan tidak menghasilkan banyak Psi Boost yang sebanyak Turbo berikan, tetapi ada perusahaan seperti Comtech yang bisa menghasilkan kekuatan yang besar juga

    Turbo sangat bagus untuk High-End Power, dan bekerja bagus untuk Japanese Inline Motors, kekuranganya di Low-End Power tertutupi oleh RPM-RPM tinggi, akan tetapi, ada banyak cara untuk menutupin kelemahan ini dan mengurangi Power Loss, seperti: (Ball Bearing Turbos, Fine Tuning with A/R ratio, twin turboing) untuk mengurangi lag di RPM rendah.

    Turbo bisa mengeluarkan kekuatan lari yang sangat dahsyat, tergantung dengan Tuning mesinya, dan ukuran Turbonya, makin besar turbonya, makin lama juga penendangan turbonya terhadap power band

    Turbo bekerja dengan arus exhaust yang memberi kekuatan ke turbin dan kompressor

    Kalo Supercharger kalo gk salah, bekerja dengan gerakan rotasi Crankshaft kalo gk Camshaft Pulley

    Note: Ini belum tentu benar, cmn memberi tahu yg gw tau aja
    TaeYoon &lt;3

  11. #11
    ~Senior Poster~
    This user has no status.
     
    ----
     
    =*R*= Masih Tahap Guest
    Join Date
    Jul 2008
    Posts
    629
    Post Thanks / Like
    Achievements

    Re: [INFO] seputar istilah dan ilmu belajar mesin kendaraan

    Article taken from club-s12.org forums. Posted by Magnum

    Blow-Off Valve (BOV)
    The function of the blow-off valve is to vent the "excess" compressed air entering the throttle-body when the throttle plate closes. Consider the case of the car running with high boost in second gear. In order to shift to third, the driver lets off the accelerator, momentarily closing the throttle plate. All of the sudden, the compressed air from the turbo (which was rushing into the engine) has no place to go. Instead the air "bounces" off of the throttle-body plate and begins travelling backward through the intercooler and into the turbo. This "backpressure" causes the turbo to slow down and produce less boost during a shift. This backpressure not only reduces the boost level, it is also potentially dangerous to the turbo, and is referred to as compressor surge.

    To avert this problem, vacuum opens the BOV (mounted in the upper intercooler pipe) when the throttle plate closes. This diverts the compressed, intercooled air back into the intake stream, and allows the turbo to continue to run normally "across" shifts.

    The blow-off valve is also known as the bypass or compressor bypass valve.

    Some cars, like certain Starions, don't use a blow-off valve.

    On second-generation DSMs, the blow-off valve is made of cheap plastic and tends to leak when the car's boost level is increased.
    TaeYoon &lt;3

  12. #12
    ~Senior Poster~
    This user has no status.
     
    ----
     
    =*R*= Masih Tahap Guest
    Join Date
    Jul 2008
    Posts
    629
    Post Thanks / Like
    Achievements

    Re: [INFO] seputar istilah dan ilmu belajar mesin kendaraan

    Article taken from club-s12.org forums. Posted by Magnum

    A/R Ratio (Area/Radius Ratio) - There is an excellent description of A/R in the Corkey Bell book "Maximum Boost: Design, Testing, and Installing Turbocharger Systems", since I can't think of a better way to define the term I'll copy Mr. Bell's description:

    " While basic turbine size reflects a measure of the turbine's flow capability, the A/R ratio is a method of fine tuning between basic sizes. To easily grasp the idea of an A/R ratio, imagine the turbine housing as nothing more than a cone wrapped around a shaft to look like a snail. Unwrap the cone and cut of the small end a short distance from the tip. The hole in the end of the cone is the discharge area. The area of this hole is the 'A' of the A/R ratio. The size of the hole is significant, as it determines the velocity with which exhaust gases exit the turbine scroll and enter the turbine blades. For any given rate of flow, a smaller exit will require that the gases flow faster. Thus, the area of the exit is important in controlling the velocity of the gases as they enter the turbine blades. This velocity has much to do with controlling the actual speed of the turbine. It is necessary to keep in mind that the area of the exit is the controlling factor in the bad side-effect of exhaust gas back pressure and, thus, reversion into the combustion chambers.

    The 'R' of the A/R ratio is the distance from the center of the section area in the cone to the center of the turbine shaft. All 'A's divided by their respective 'R's will give the same dividend.

    The 'R' also has a strong influence in controlling turbine speed. If one imagines the turbine blade tips will travel about as fast as the gas is moving when it enters the tip area, it is easy to see that a smaller 'R' will impart a higher rotating speed to the turbine."

    In short, all other things being equal, the smaller the A/R the less lag there will be, but the turbo may not be able to produce power at higher RPMs. A larger A/R will produce more lag but have a lot of top end power.
    TaeYoon &lt;3

  13. #13
    ~Senior Poster~
    This user has no status.
     
    ----
     
    =*R*= Masih Tahap Guest
    Join Date
    Jul 2008
    Posts
    629
    Post Thanks / Like
    Achievements

    Re: [INFO] seputar istilah dan ilmu belajar mesin kendaraan

    Article taken from club-s12.org forums. Posted by Magnum

    Clipping
    A common trick to increase the output of a turbocharger is "clipping" the turbine wheel. When the turbine wheel (on the "hot side") is clipped, the fins are cut away at a slight angle (usually between 7 and 10 degrees), thereby reducing the amount of metal that is in the path of the exhaust gasses. The reason this is done is to lower the resistance of the turbo to exhaust gasses flowing through it.

    At high RPMs, clipping increases engine horsepower, since the turbo is allowing the exhaust gasses to escape more quickly (and at high RPMs, the turbo can only spin so fast). At low RPMs, clipping tends to slightly increase turbo lag, since less fin-area means that the turbocharger will take longer to get up to speed. This tradeoff is typically well worth the upper-range power gains.
    TaeYoon &lt;3

  14. #14
    ~Senior Poster~
    This user has no status.
     
    ----
     
    =*R*= Masih Tahap Guest
    Join Date
    Jul 2008
    Posts
    629
    Post Thanks / Like
    Achievements

    Re: [INFO] seputar istilah dan ilmu belajar mesin kendaraan

    Article taken from club-s12.org forums. Posted by Magnum

    There are several criteria which are vitally important when choosing, designing and working with a disc brake system: (1) Keep deflection down; (2) The use of hard linings to avoid flex from sponginess; (3) The use of small diameter flex lines; (4) The use of steel brake lines whenever possible; (5) Volume requirements of the caliper; (6) Available pedal ratio; (7) Master Cylinder size and design.

    Calipers: There are two types of calipers floating or non-floating. Calipers are generally made from three common casting metals: magnesium, aluminum and cast iron. Calipers are made of different materials the most common are aluminum and cast iron. The material used in the calipers becomes important to help eliminate deflection, deflection results in a spongy pedal. The modulus of elasticity is very important to eliminate the deflection (flexing) of the caliper. The higher the modulus of elasticity number, the greater resistance to flex. Magnesium has a modulus of 6.5 million, aluminum has a modulus of 10 million, cast iron has a modulus of 14.5 million and steel has a modulus of 30 million.

    The floating design was designed by the car manufacturers essentially to make the caliper less expensive to produce. It successfully applies the physics principle of "for every action caused an opposite and equal reaction happens." With this in mind they eliminated the piston(s) on one side of the caliper. This floating caliper is not solidly mounted, but slides back and forth on bushings. When braking force is applied, the piston push the brake pad on the primary side and the reaction is the rotor being squeezed from the force of the pad primary side allowing the horseshoe shaped caliper to slide on the bushings so the secondary pads is used to squeeze the rotor. The caliper has to be very rigid retain low deflection or the principle will be lost. Cast iron and steel is used because of its' modulus number of 14.5 million and 30 million respectfully. This also increases the "sprung weight" and it retains the heat longer. The big advantage to the full floating design (single piston) is if the rotor has a slight run out (wobble), the floating feature will compensate without creating any instability. The other advantage is the single piston design is easier to bleed. The disadvantages are it heavier, retains heat, requires approximately 100 pounds of pressure more to "slide" the caliper and requires more volume of brake fluid due to the diameter of the piston. Floating designed calipers also come with 2 pistons, that are on the same side.

    Non-floating calipers (i.e. 2, 4 or 6 piston) require a fixed mounting bracket. Most race applications use this type of caliper, because they are generally are made of aluminum which displaces the heat faster and requires both less pressure and less volume to operate. The floating design allows all the piston to be applied at the same pressure, because the pressure is equalized when pressure is applied, thereby allowing the rotor to be squeezed by opposing forces (piston on each side). Aluminum will displace heat 1.5 to 3 times faster than the cast iron or steel calipers. This is important when the rotors heat up to 1100 to 1200 degrees in a race car. Don't forget brake fluid has a boiling point of 550 to 700 degrees F. We have come a long way for the old 1965 Corvette design calipers, current non-floating calipers are easily rebuilt and even have thermo barrier type pistons that reducing the transfer of heat from the rotors.

    OEM (floating) vs 4 piston (non-floating): Most of the brake kit currently being sold is single piston OEM type caliper. In order for the caliper to squeeze the rotor it has to use a floating design, otherwise it would only apply pressure from one side to the rotor. Because of this design you loose approximately 100 psi. 4 piston caliper squeeze from both sides and are fixed (don't float), so they (4 piston) do not require as much pressure. The single piston calipers also requires more volume to work. The area of a 2-3/4" single piston caliper is 5.93 si VS the area of two (2) pistons on a 4 piston design of 3.53 square inches. (you only multiply by 2 piston to get the area because the other 2 piston are being apply at the same time to squeeze the rotor, unlike the one piston design) anyway 5.93 si VS 3.53 big difference. Does the volume effect the braking? Yes, it has a great effect on the master cylinder volume that is required for all 4 wheels. This will mean you will have to use a larger diameter master cylinder to meet the requirements of the calipers. The larger the master cylinder is the lower the pressure output.
    TaeYoon &lt;3

  15. #15
    ~Senior Poster~
    This user has no status.
     
    ----
     
    =*R*= Masih Tahap Guest
    Join Date
    Jul 2008
    Posts
    629
    Post Thanks / Like
    Achievements

    Re: [INFO] seputar istilah dan ilmu belajar mesin kendaraan

    Rotors: Rotors come in various designs, but basically there is a vented rotors and solid rotors. Rotors can be a one piece design with the hat or hub incorporated in the casting or the two piece design where the rotor is separate from the hat or hub. In this case the bigger the rotor the better. The bigger the diameter means it takes that much longer before the pad is in the same area during the rotation of the rotor. This size also gives a mechanical leverage "advantage" when you increase the diameter of the rotor with the same calipers and master cylinder.

    A good example of upgrading would be if you have a Mustang/Pinto 9" rotor and upgrade to a 11" rotor. Not only does it allow more surface for cooling, it give a significant mechanical advantage. This results in less pressure and brake force by the caliper to stop your vehicle.

    On vented rotors the fins should be far enough apart to allow air to flow between the fins, but close enough together so it allows enough support for the rotor walls. There can be as much as six tons of force being applied during braking and you do not want any deflection. Some vented rotors have curved fins to allow better flow of air and maximizing the transfer of heat. Don't forget these rotors can get up to 1,200 degrees F. so anything you can do to assist the transfer of heat is a plus. If you have ever watched a NASCAR short track race with the camera on the rotors, you will know how hot they get.

    Solid rotors should never be used on a car weighing over 2,800 pounds. These were designed for light duty and never used on a vehicle where heavy braking is needed. These rotors serve a specific need and work very good under limited conditions.



    Your better designed brake systems will have the rotor separate from the hat or hub. This allows the rotor to have a uniform temperature across the rotor (remember the NASCAR rotor?). By having this uniformity it minimizes the warping and cracking. Wilwood for an example uses an aluminum hub in the front which the rotors bolt to. This allows the hot rotor to cool at the same rate throughout the rotor, because it is made of different material and it is a separate part. The aluminum hub is also designed to displace heat and keep it away from the bearings (remember the modulus of elasticity number is 75 percent that of cast iron, meaning it will displace heat at a faster rate). Having a two piece design also prevents the storage of this heat compared to a one piece cast iron rotor. Calipers also benefit by having less heat transferred to them and it assists to keep the brake fluid under the boiling temperature.

    Factories use a one piece design, incorporating the hub/hat with the rotor, this was done strictly for cost. Notice that the hub and rotor is cast as one piece. This does not allow for the uniform distribution of heat and it is high prone to warping and cracking due to the differences in temperature between the rotor and hub area. The one piece cast iron rotor will also retain heat longer, thereby transferring excessive heat to the calipers and brake fluid. The only advantage to the one piece design is initial cost. Did you really save any money?
    TaeYoon &lt;3

  16. #16
    ~Senior Poster~
    This user has no status.
     
    ----
     
    =*R*= Masih Tahap Guest
    Join Date
    Jul 2008
    Posts
    629
    Post Thanks / Like
    Achievements

    Re: [INFO] seputar istilah dan ilmu belajar mesin kendaraan

    Master Cylinders: The basic design of master cylinders are single reservoirs or dual reservoirs. Before disc brakes all master cylinders had single reservoir. This was because you wanted to apply equal pressure to all 4 drum brakes. The proportioning between the front and rear brakes was regulated by the size of the wheel cylinders. Generally you ran bigger wheel cylinders in front, because it applied more pressure and if you need fine tuning you added a manual proportioning valve to the system. In the late 60's and 70's when disc brakes were being used more and more, there was a need to have a dual master cylinder, because the requirements were different when you ran disc brakes in front and drums in the rear. Remember the volume requirements of the OEM caliper? Well this high volume and more pressure required the factories to build the master cylinders so it was cheap to produce, have a large volume and met the requirements of both the disc and drum brakes. Notice the larger reservoir in the front portion of the disc/drum master cylinder and the small reservoir for the drum brakes.

    OEM single master cylinders are generally for drum brake applications. They normally have a residual valve built into the master cylinder. This valve is needed so that the cup seals in the wheel cylinder has pressure against it preventing them from leaking. It also allows for a certain amount of pre-load on the mechanical parts. You can not use this master cylinder if you have disc brakes in front because of the residual valve. I have answered many questions regarding people that have installed brakes incorrectly by using a drum brake master cylinder.

    If you experience a brake lock up after a few applications of the brake pedal, it is directly related to a residual valve retaining the brake fluid within the lines and not allowing the fluid to flow back to the master cylinder. The problem is either the wrong residual valve being used, a drum brake master cylinder being used on disc brake calipers, a inline residual valve plumbed in to the brake system with a built in residual valve in the master cylinder or a defective residual valve.

    OEM tandem master cylinders will have a residual valve built in when there is a drum brake application. That is why it is important to buy the correct master cylinder based to application. Yes, you can remove the residual valve from the master cylinder, but often the reservoir is to small and it does not hold enough brake fluid for the disc brake application. So great care must be taking when using a modified master cylinder. OEM tandem master cylinders were designed to be cheap. Careful consideration should be made when selecting the master cylinder, because of the high volume of brake fluid required and pressure for the disc brake application. OEM tandem master cylinders do not produce the same volume as two side by side master cylinders. Remember the application is stacked one in front of each other so you have a limited travel and volume to work with.

    For over 30 years race cars have used dual master cylinders, this is the use of two master cylinders that are side by side being applied at the same time. The mounting is generally done on the fire wall, but special applications have made it possible to mount these on the floor, under the dash and in a remote location. A balance bar is used to balance the force to each master cylinder. Think of a bar with a pivot point in the middle, when pressure is applied to the pivot point both ends move the same distance. Now think of the same bar with the pivot point move more to one side, when pressure is applied the shorter end will move before the long end. That is basically how the balance bar works. In a race car there would be a cable connected to one end of the balance bar, this cable would go to a knob in the drivers compartment, so he can make adjustments as the condition of his brakes and road condition changes. The balance bar also eliminatesthe need for a proportional valve. On certain applications a remote reservoir(s) are used, in these application it deletes the use of residual valves on disc brake applications. Master cylinders of this type do not have built in residual valves in them so if you have a drum brake application you will still need an inline ten pound residual valve, this is needed to retain pressure against the cups of the wheel cylinders.

    There are major advantages to using dual master cylinders: (1) Smaller diameter master cylinders can be used to increase output pressure. The design allow the application of two master cylinders being applied at the same, thereby doubling the volume output. Because of this high pressure output you will not need a vacuum booster, besides if you are running any type of camshaft, chances are you do not have enough vacuum to run the booster anyway. (2) The balance bar eliminates the use of a proportional valve and give you the optional remote adjustment. (3) The remote fill applications deletes the need for residual valve normally used when the reservoirs are lower than the calipers
    TaeYoon &lt;3

  17. #17
    ~Senior Poster~
    This user has no status.
     
    ----
     
    =*R*= Masih Tahap Guest
    Join Date
    Jul 2008
    Posts
    629
    Post Thanks / Like
    Achievements

    Re: [INFO] seputar istilah dan ilmu belajar mesin kendaraan

    Formula for Master Cylinder Pressure

    I have been asked hundreds of times how do you determine the pressures output of the master cylinder. The following information will help you determine the proper size master cylinder:

    To figure how much pressure your master cylinder is putting out:
    C = pedal ratio
    D = pounds of pressure apply by your foot
    E = area of you master cylinder
    F = pounds of pressure out of the master cylinder
    C X D /(divided by) E = F

    Example: If you have a 1" master cylinder the area equals 1/2" x 1/2" x 3.14 = 0.785 Square Inches. So, 100 pounds (of applied foot pressure) X 6 (pedal ratio) divided by 0.785 = 764 pounds of pressure.
    If you have a 1-1/8" master cylinder, 100 psi X 6 (pedal ratio) divided by 0.9935 = 604 pounds of pressure.

    Here is some info on master cylinder with "constant" of 6 to 1 pedal ratio and 100 psi being applied.
    3/4" master cylinder = 1359 psi
    13/16" master cylinder = 1158 psi
    7/8" master cylinder = 998 psi
    15/16" master cylinder = 870 psi
    1" master cylinder = 764 psi
    1-1/8" master cylinder = 603 psi

    DO NOT Try to use a OEM master cylinder smaller than 1" without figuring out the volume requirement. It is like choosing between jump off a cliff or a plane, how do you want to die? Remember you can not do anything after you run out of brake fluid, but you can still press on the brake pedal harder.
    TaeYoon &lt;3

  18. #18
    ~Senior Poster~
    This user has no status.
     
    ----
     
    =*R*= Masih Tahap Guest
    Join Date
    Jul 2008
    Posts
    629
    Post Thanks / Like
    Achievements

    Re: [INFO] seputar istilah dan ilmu belajar mesin kendaraan

    Power Boosters: Power boosters were needed when disc brake systems were being used more and more on factory cars. The amount of boost created from the booster is directly related to the square inches of the booster and the inches of vacuum imputed from the engine. Since the disc brake calipers required a greater volume of fluid due to the size of the pistons and the clamping force (some times up to 6 tons), the master cylinder requires a bigger diameter bores to push the required volume of brake fluid. When you increase the bore size you reduce the output pressure of the master cylinder. In order to boost the pressure output of this larger bore master cylinder the factories installed a power booster. Power booster range in size from 7" to 11". Most street rods have floor mounted pedals so the master cylinders are generally located under the floor boards. This creates a room problem so the 7" booster was incorporated to use with the 1" and 1-1/8" master cylinders. The biggest problem with using a power booster is it requires vacuum to operate and most hot rods have 3/4 race cams so there is little or no vacuum. If you are currently using a power booster and having problems stopping, take a vacuum gauge and check the inches of vacuum. To work properly it takes 16-18 inches of vacuum anything much less than this forget it.

    In the past I have seen everything from remote vacuum canister to electric vacuum pumps to increase or store the vacuum. So what happens when the engine dies or you loose your 12 volt electricity? No brakes! Can't Stop! Funny you don't see power boosters on race cars. Yes, they use dual master cylinders.

    To view the effect of inches of vacuum vs the size booster you have click on this hyperlink.

    Brake Lines: Think of your brakes lines as the blood system in your body. Just like your body there are important things that need to be implemented when running your brake lines. Never run your brake lines near any source of heat, such as headers or exhaust pipes. Use steel brake lines as much as possible and keep the length of the flexible line as short as possible. In selecting brake lines always use thick wall tubing and steel braided teflon lined flex hose. The rigidity of the brake system is a must, you do not want any part of this to flex. Use 3/16" brake lines on most applications, the small 3/16" line will fit the need of 99 percent of the applications. Always double flare the steel lines, even if you are using AN type fittings. We first double flare the lines with a 45 degree, then flare it with a 37 degree flaring tool, when using AN type fittings.

    It seems that the latest "fad" is to route your brake lines inside your boxed frame. I for one think the brake should be where you can get to them for service and inspection. How do you know if the lines are leaking, unless you buy tubing in 20 foot lengths the line inside your frame has a connection. Was the brake line mounted to the lower rail? Outside rails? or Inside rails? If you have to drill into your frame where is the brake lines? How was it mounted and where? Clamps? Was the clamps held down with machine screws? Will the machine screws work loose? Unless the brake lines were stainless, steel lines do rust, so how do you replace the brake lines? Simple is always the best, route your brake lines where you can service them.
    TaeYoon &lt;3

  19. #19
    ~Senior Poster~
    This user has no status.
     
    ----
     
    =*R*= Masih Tahap Guest
    Join Date
    Jul 2008
    Posts
    629
    Post Thanks / Like
    Achievements

    Re: [INFO] seputar istilah dan ilmu belajar mesin kendaraan

    Proportional Valves: Proportional valves are used to regulate the pressure in the line. The Wilwood valve shown here, has an adjustment range of 100 to 1,000 psi. It can decrease your line pressure up to 57 percent. It is generally used on the back brake to adjust the balance between the front and rear brakes.



    Residual Valves: Residual valves are pressure valve use to retain pressure in the lines. The most common use is on a hotrod when there is a floor mounted brake pedal and master cylinder. Mounting the master cylinder (M/C) below the floor positions it below the calipers. Gravity will cause the fluid to flow away from the calipers. The residual valve will retain pressure within the lines. (i.e. 2 pounds residual valve will retain 2 pounds of pressure, 10 pound will retain 10 pounds.) Drum brake master cylinders have residual valve(s) built into the master cylinder. This is needed to maintain pressure against the cup seals in the wheel cylinders. If you are using a disc brake master cylinder or after market you will need to install a 10 pound residual valve for the drum brakes. Do not install a residual valve if your master cylinder already has one in it. This will cause the brakes to lock up after the second application to the brake pedal.

    Always use the correct master cylinder for the application, because of the built in residual valves.
    TaeYoon &lt;3

  20. #20
    ~Senior Poster~
    This user has no status.
     
    ----
     
    =*R*= Masih Tahap Guest
    Join Date
    Jul 2008
    Posts
    629
    Post Thanks / Like
    Achievements

    Re: [INFO] seputar istilah dan ilmu belajar mesin kendaraan

    Brake Fluid: Brake fluid is the liquid that transmits the force through pressure for the brake pedal to the brake lines. Basically the brake fluid does not compress so it transmits this force (pressure) without lost.

    One of the worse enemy of brake fluid is heat. If the brake fluid boils or there is a leak in your system there will be a lost of this incompressibility and your pedal travel will increase. Not all brake fluids are the same. Most brake fluid has ethylene glycol as it main ingredient. Ethylene glycol has lubricating capability for the rubber parts and has a high boiling point. Moisture is another enemy of brake fluids. All bake fluids will absorb moisture form the atmosphere, this moisture lowers the boiling point of the fluid drastically. This moisture also can effect the balance of the system casing corrosion. A perfect example of moisture getting your system is the early Corvette brakes where it was common to change the calipers or a regular basis due to contamination and corrosion.

    Silicone brake fluid has a higher boiling point (around 700 degrees F.) than the ethylene glycol base fluids, but the major disadvantages is not "hygroscopic". Hygroscopic? "Altered by the absorption of moisture" What this means is since it is not a glycol based, when moisture enters the system it is not absorbed by the fluid. This results in beads of moisture moving through the brake line, collecting in the calipers. Since it is not uncommon to have temperatures in excess of 212 degrees F. (the boiling point of water), this collection of moisture will boil causing steam and vapor lock, this in turn will cause system failure. Silicone (DOT 5) is also highly compressible due to aeration and foaming under normal braking conditions.

    If you are changing from a glycol base fluid to silicone or the other way around. The two types do not mix so your system should be completely purged, disassembled and dried out. When the two fluids are mixed you will get a gummy substance and it will really mess up your system.

    We recommend using a good DOT 3 fluid. Wilwood makes a hi-temp fluid with a minimum dry-boiling point of 570 degrees F Dry-boiling point is measure in its virgin non-contaminated state. Wet-boiling point is the temperature a brake fluid will boil after it is fully saturated with moisture. DOT 3 fluids have a minimum wet boiling point of 284 degrees F.

    Brake fluid should be changed periodically due to contamination. Never mix different DOT brake fluids. Under racing condition you would change these fluids like changing your oil.
    TaeYoon &lt;3

+ Reply to Thread
Page 1 of 4 1 2 3 ... LastLast

Bookmarks

Posting Permissions

  • You may not post new threads
  • You may not post replies
  • You may not post attachments
  • You may not edit your posts